
ẽα(c0)

−→eγ(c
1)

−→eγ(c
2)

e(c2)

←−eβ(c
1)

ẽω(c1)

←−eβ(c
2)

e(c2)

+

Figure 8. A more detailed version of gure 4 showing the two distinct directions of information ow from the root downwards to the leafs

(left) and from the leafs upwards (right). Information on the same level is added up to obtain ê(c) The blue arrows signify sampling with

subsequent encoding and are only necessary during inference.

A. Compression Scheme

Here we give more details for the compression and de-

compression algorithms presented in sections 3.2 and 3.3.

For all formulas and examples we assume we want to com-

press an entire subtree starting at node c0.

A.1. Encoding

In the encoding stage each node which has children gath-

ers their information.

ẽα(c
l) =

{

e(cl), if cl is full or empty or at nest layer

fα(ẽα(c
l+1
0 ), . . . , ẽα(c

l+1
k−1)), else

(1)

Here cl is a cell in layer l where we start counting from the

root of the currently compressed subtree. Furthermore e(c)
is the token embedding as introduced in section 2. and ẽα(c)
is the compressed embedding, which is dened recursively

on the children of node cl : C(cl) = cl+1
0 , . . . , cl+1

k−1 (for

an octree k = 8). fα is an arbitrary learnable compression

function. We use a single linear function with non-linearity,

but of course more complex functions are possible. The

weights α for this function differ for each layer l, but we

omit a subscript for readability. The compressed feature

vector of the subtree is then ẽα(c
0).

A.2. Decoding

The decoding stage has two ”directions”. Information

ows downwards from the root and upwards from the al-

ready sampled leaf nodes. The upward direction is given by

the formula:

←−eβ(c
l
i) = fβ(ẽω(c

l
0), . . . , ẽω(c

l
j)) (2)

where j < i and cli, c
l
j ∈ C(cl−1). Note that ẽω is the same

function used in the compression, but with different learn-

able weights. Therefore ←−eβ(c
l
i) depends on all its already

generated siblings (if we are at leaf level) or their descen-

dants otherwise.

The downward direction is given by:

−→eγ(c
l+1
i ) =

{

f i
γ(ẽα(cl)), c

l+1
i ∈ C(cl) l is root level

f i
γ(ê(cl)), c

l+1
i ∈ C(cl) else

(3)

This function can be seen as a transposed convolution,

where all children depend on their parent, but with differ-

ent weights (denoted with the superscript i in f i
γ). Note that

in this step we already integrate the information from the

upward ow through ê(cl)), which is dened as:

ê(ci) =
−→eγ(ci) +

←−eβ(ci) (4)

During training the upward direction can be computed be-

fore the downward direction, as all information is already

present. During inference these computations need to be

interleaved.

B. Open Source

The research code is open source and can be accessed at

https://github.com/GregorKobsik/Octree-

Transformer.

C. Samples

Additional examples from both our unconditional

(Fig. 9) and conditional (Fig. 10) sampling schemes at res-

olutions of 643, 1283, 2563.



Resolution 643

Resolution 1283

Resolution 2563

Figure 9. Unconditional samples



Resolution 643

Resolution 1283

Resolution 2563

Figure 10. Conditional samples



(a) Chamfer Distance (b) Intersection over Union

Figure 11. Relative improvements to the baseline, evaluated for the chair subset of ShapeNet. The dashed line denotes OccNet and the

dotted line ConvONet, which both only are evaluated with an input resolution of 32 similar to our network, that outputs a resolution of 256.

D. Evaluation Superresolution

Unfortunately we cannot do a direct comparison against

OccNet (Mescheder et al. [18]) and ConvONet (Peng et al.

[23]), as they work on different data. However, we both

compare against the same baseline (the input voxelization),

so we can compare the relative improvements to this base-

line. This is however still not a fair comparison due to sev-

eral reasons. For our method we use a higher resolution

voxelization as ground truth instead of the original meshes

(like OccNet and ConvONet do), both for training and eval-

uation. Furthermore, our input voxelization is dened dif-

ferently, as for us a voxel is ”full”, if it contains any geom-

etry at all (usually a voxel is full if its center is within the

shape). Lastly we use different train/test splits.


